

DATA STRUCTURES

Introduction:
Basic Concepts and Notations
Complexity analysis: time space tradeoff
Algorithmic notations, Big O notation
Introduction to omega, theta and little o notation

Basic Concepts and Notations

⚫ Algorithm: Outline, the essence of a computational
procedure, step-by-step instructions

⚫ Program: an implementation of an algorithm in some
programming language

⚫ Data Structure: Organization of data needed to solve
the problem

Algorithmic Problem

⚫ Infinite number of input instances satisfying the
specification. For example: A sorted, non-decreasing
sequence of natural numbers of non-zero, finite
length:
⚫ 1, 20, 908, 909, 100000, 1000000000.
⚫ 3.

Specification
of input ?

Specification
of output as a

function of
input

Algorithmic Solution

⚫ Algorithm describes actions on the input instance
⚫ Infinitely many correct algorithms for the same

algorithmic problem

Specification
of input Algorithm

Specification
of output as a

function of
input

What is a Good Algorithm?

⚫ Efficient:
⚫ Running time
⚫ Space used

⚫ Efficiency as a function of input size:
⚫ The number of bits in an input number
⚫ Number of data elements(numbers, points)

Complexity Analysis
and

Time Space Trade-off

Complexity
⚫ A measure of the performance of an algorithm

⚫ An algorithm’s performance depends on

⚫ internal factors

⚫ external factors

 External Factors
⚫ Speed of the computer on which it is run

⚫ Quality of the compiler

⚫ Size of the input to the algorithm

Internal Factor

●9

●The algorithm’s efficiency, in terms of:

● Time required to run

● Space (memory storage)required to run

●Note:
●Complexity measures the internal factors (usually more interested
in time than space)

Two ways of finding complexity

⚫Experimental study
⚫Theoretical Analysis

Experimental study

⚫ Write a program implementing the algorithm
⚫ Run the program with inputs of varying size and

composition
⚫ Get an accurate measure of the actual running time
 Use a method like System.currentTimeMillis()
⚫ Plot the results

Example

⚫ a. Sum=0;
 for(i=0;i<N;i++)
 for(j=0;j<i;j++)
 Sum++;

Example graph

●Time in millisec

●Size of n

Limitations of Experiments

⚫ It is necessary to implement the algorithm, which may be

difficult

⚫ Results may not be indicative of the running time on other

inputs not included in the experiment.

⚫ In order to compare two algorithms, the same hardware and

software environments must be used

⚫ Experimental data though important is not sufficient

Theoretical Analysis

⚫ Uses a high-level description of the algorithm instead of an

implementation

⚫ Characterizes running time as a function of the input size, n.

⚫ Takes into account all possible inputs

⚫ Allows us to evaluate the speed of an algorithm independent of

the hardware/software environment

Complexity analysis
⚫ Why we should analyze algorithms?
⚫ Predict the resources that the algorithm requires
⚫ Computational time (CPU consumption)
⚫ Memory space (RAM consumption)
⚫ Communication bandwidth consumption

⚫ The running time of an algorithm is:
⚫ The total number of primitive operations executed (machine

independent steps)
⚫ Also known as algorithm complexity

Need for analysis : Internal
Factors
⚫ To determine resource consumption

⚫ CPU time

⚫ Memory space

⚫ Compare different methods for solving the same

problem before actually implementing them and

running the programs.

⚫ To find an efficient algorithm

Space Complexity
⚫ The space needed by an algorithm is the sum of a fixed part

and a variable part

⚫ The fixed part includes space for

⚫ Instructions

⚫ Simple variables

⚫ Fixed size component variables

⚫ Space for constants

⚫ Etc..

Cont…
⚫ The variable part includes space for

⚫ Component variables whose size is dependant on the

particular problem instance being solved

⚫ Recursion stack space

⚫ Etc..

Time Complexity
⚫ The time complexity of a problem is

⚫ the number of steps that it takes to solve an instance of the problem as a

function of the size of the input (usually measured in bits), using the

most efficient algorithm.

⚫ The exact number of steps will depend on exactly what machine or language

is being used.

⚫ To avoid that problem, the Asymptotic notation is generally used.

Time Complexity
⚫ Worst-case
⚫ An upper bound on the running time for any input of

given size
⚫ Average-case
⚫ Assume all inputs of a given size are equally likely

⚫ Best-case
⚫ The lower bound on the running time

Time Complexity – Example
⚫ Sequential search in a list of size n
⚫ Worst-case:
⚫ n comparisons

⚫ Best-case:
⚫ 1 comparison

⚫ Average-case:
⚫ n/2 comparisons

Asymptotic notations
⚫ Algorithm complexity is rough estimation of

the number of steps performed by given
computation depending on the size of the
input data
⚫ Measured through asymptotic notation
⚫ O(g) where g is a function of the input data size

⚫ Examples:
⚫ Linear complexity O(n) – all elements are processed once (or

constant number of times)
⚫ Quadratic complexity O(n2) – each of the elements is

processed n times

O-notation
Asymptotic upper bound

Example
⚫ The running time is O(n2) means there is a function

f(n) that is O(n2) such that for any value of n, no
matter what particular input of size n is chosen, the
running time of that input is bounded from above by
the value f(n).
⚫ 3 * n2 + n/2 + 12 ∈ O(n2)

⚫ 4*n*log
2
(3*n+1) + 2*n-1 ∈ O(n * log n)

 Ω notation
Asymptotic lower bound

Example
⚫ When we say that the running time (no modifier) of an

algorithm is Ω (g(n)).
⚫ we mean that no matter what particular input of size

n is chosen for each value of n, the running time on
that input is at least a constant times g(n), for
sufficiently large n.

⚫ n3 + 20n ∈ Ω(n2)

Θ notation
g(n) is an asymptotically tight bound of f(n)

Example

Big O notation
⚫ f(n)=O(g(n)) iff there exist a positive constant c and

non-negative integer n0 such that
f(n) ≤ cg(n) for all n≥n0.

⚫ g(n) is said to be an upper bound of f(n).

Basic rules
1. Nested loops are multiplied together.

2. Sequential loops are added.
3. Only the largest term is kept, all others are dropped.
4. Constants are dropped.
5. Conditional checks are constant (i.e. 1).

Example of
complexity

Linear loop

1)
for(int i = 0; i < 10; i++)

 {
cout << i << endl;

}
//time taken = ?

2)
 for(int i = 0; i < n; i++)
 {

cout << i << endl;
}

//time taken = ?

⚫ Ans: O(n)

Quadratic Loops

1) for(int i = 0; i < 100; i++)
{

for(int j = 0; j < 100; j++)
 {

//do swap stuff, constant time
}

} //Time Taken =?

2) for(int i = 0; i < n; i++)
{

for(int j = 0; j < n; j++)
 {

//do swap stuff, constant time
}

} //Time Taken =?

⚫ Ans O(n^2)

Complex condition

1) for(int i = 0; i < 2*100; i++)
 {
cout << i << endl;
}

//Time Taken =?

2) for(int i = 0; i < 2*n; i++)
 {
cout << i << endl;
}

//Time Taken =?

⚫ At first you might say that the upper bound is O(2n);
however, we drop constants so it becomes O(n)

More loops in one program
1) for(int i = 0; i <10 ; i++)

 {
cout << i << endl;

 }

for(int i = 0; i < 100; i++)
{
for(int j = 0; j < 100; j++)

{
//do constant time stuff
}

} //Time Taken =?

2)

for(int i = 0; i < n; i++)
 {

cout << i << endl;
 }

for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)

{
//do constant time stuff
}

} //Time Taken =?

⚫ Ans : In this case we add each loop's Big O, in this case
n+n^2. O(n^2+n) is not an acceptable answer since we
must drop the lowest term. The upper bound is
O(n^2). Why? Because it has the largest growth rate

Quadratic loop

1) for(int i = 0; i < 100; i++)
 {

for(int j = 0; j < 2; j++)
{
//do stuff
}

 } //Time Taken =?

2) for(int i = 0; i < n; i++)
{

for(int j = 0; j < 2; j++)
{
//do stuff
}

}
 //Time Taken =?

⚫ Ans: Outer loop is 'n', inner loop is 2, this we have 2n,
dropped constant gives up O(n)

Complex iteration

1) for(int i = 1; i < n; i =i* 2)
 {

cout << i << endl;
}

//Time Taken =?

2) for(int i = 1; i < 100; i =i* 2)
 {

cout << i << endl;
}

//Time Taken =?

⚫ There are n iterations, however, instead of simply
incrementing, 'i' is increased by 2*itself each run. Thus
the loop is log(n).

Quadratic loop

1) for(int i = 0; i < n; i++)
{

for(int j = 1; j < n; j *= 2)
{
//do constant time stuff
}

}
//Time Taken =?

⚫ Ans: n*log(n)

While (n>=1)
{

n=n/2;
}

2) While (n>=1)
{

n=n/2;
}

●Comp 122

Relations Between Θ, O, Ω

time space tradeoff
⚫ A time space tradeoff is a situation where the memory use

can be reduced at the cost of slower program execution
(and, conversely, the computation time can be reduced at
the cost of increased memory use).

⚫ As the relative costs of CPU cycles, RAM space, and hard
drive space change—hard drive space has for some time
been getting cheaper at a much faster rate than other
components of computers[citation needed]—the
appropriate choices for time space tradeoff have changed
radically.

⚫ Often, by exploiting a time space tradeoff, a program can be
made to run much faster.

Time Space Trade-off
⚫ In computer science, a space-time or time-memory trade off is a situation

where the memory use can be reduced at the cost of slower program

execution (or, vice versa, the computation time can be reduced at the cost of

increased memory use). As the relative costs of CPU cycles, RAM space,

and hard drive space change — hard drive space has for some time been

getting cheaper at a much faster rate than other components of

computers-the appropriate choices for space-time tradeoffs have

changed radically. Often, by exploiting a space-time tradeoff, a

program can be made to run much faster.

Types of Time Space Trade-off
⚫ Lookup tables v. recalculation

 The most common situation is an algorithm involving a lookup table: an

implementation can include the entire table, which reduces computing time,

but increases the amount of memory needed, or it can compute table entries

as needed, increasing computing time, but reducing memory requirements.

⚫ Compressed v. uncompressed data

 A space-time trade off can be applied to the problem of data storage. If data

is stored uncompressed, it takes more space but less time than if the data

were stored compressed (since compressing the data reduces the amount of

space it takes, but it takes time to run the decompression algorithm).

Depending on the particular instance of the problem, either way is practical.

Thank You

ARRAYS
 Linear arrays: Memory representation
 Traversal
 Insertion
 Deletion
 Linear Search
 Binary Search
 Merging
 2D Array : Memory representation

1

CONTENTS
2.1 Introductions
2.2 Linear Array

2.2.1 Linear Array Representations in Memory
2.2.2 Traversing Algorithm
2.2.3 Insert Algorithms
2.2.4 Delete Algorithms
2.2.5 Sequential and Binary Search Algorithm
2.2.6 Merging Algorithm

2.3 Multidimensional Array
2.3.1 2-D Array
2.3.2 Representations in Memory

2

2.1 Introduction
⚫ Data Structure can be classified as:
✔ linear
✔ non-linear

⚫ Linear (elements arranged in sequential in memory
location) i.e. array & linear link-list

⚫ Non-linear such as a tree and graph.
⚫ Operations:
✔ Traversing, Searching, Inserting, Deleting, Sorting, Merging

⚫ Array is used to store a fix size for data and a link-list
the data can be varies in size.

3

2.1 Introduction
⚫Advantages of an Array:
⚫ Very simple
⚫Economy – if full use of memory
⚫Random accessed at the same time

⚫Disadvantage of an Array:
⚫ wasting memory if not fully used
⚫ Stores same data types’ elements

4

2.2 Linear Array
⚫ Homogeneous data:

a) Elements are represented through indexes.
b) Elements are saved in sequential in memory locations.

⚫ Number of elements, N –> length or size of an array.
If:

UB : upper bound (the largest index)
LB : lower bound (the smallest index)

Then: N = UB – LB + 1
 Length = N = UB when LB = 1

5

2.2 Linear Array
⚫ All elements in A are written symbolically as, 1 .. n is the

subscript.
A1, A2, A3, , An

⚫ In FORTRAN and BASIC 🡪 A(1), A(2), ..., A(N)
⚫ In Pascal, C/C++ and Java 🡪 A[0], A[1], ..., A[N-1]
⚫ subscript starts from 0

LB = 0, UB = N–1

6

2.2.1 Representation of Array in a Memory

⚫ The process to determine the address in a memory:
a) First address – base address.
b) Relative address to base address through index function.

Example: char X[100];
Let char uses 1 location storage.
If the base address is 1200 then the next element is in 1201.
Index Function is written as:
Loc (X[i]) = Loc(X[0]) + i , i is subscript and LB = 0

 1200 1201 1202 1203

 X[0] X[1] X[2]

7

2.2.1 Representation of Array in a Memory

▪ In general, index function:
Loc (X[i]) = Loc(X[LB]) + w*(i-LB);

where w is length of memory location required.
For real number: 4 byte, integer: 2 byte and character: 1 byte.

▪ Example:
If LB = 5, Loc(X[LB]) = 1200, and w = 4, find Loc(X[8]) ?
Loc(X[8])= Loc(X[5]) + 4*(8 – 5)

= 1212

8

2.2.2 Traversing Algorithm (While loop)
▪ Traversing operation means visit every element once,

whether processed or not.
 Traversal(LA,N): This is an algorithm to traverse N
 elements of an array LA ..

9

1. [Assign counter]Set K:=0.
2. Repeat step 2.1 and 2.2 while K <= UB
 2.1 [visit element]

do PROCESS on LA[K].
 2.2 [add counter]

Set K:=K+1
[end of while loop]
4. exit.

2.2.2 Traversing Algorithm
(for loop)
Traversal(LA,N): This is an algorithm to traverse
 N elements of an array LA .
1.Repeat step 2 for K =0 to N-1
2. [visit element]

do PROCESS on LA[K].
 [end of for loop]
3. exit.

10

2.2.3 Insertion Algorithm

▪ Insert item at the back is easy if there is a space. Insert
item in the middle requires the movement of all elements
to the right as in Figure 1.

 0 1 2 3 4 k MAX_LIST-1

 1 2 3 4 5 k+1 MAX_LIST

 11

12 3 44 19 100 … 5 10 18 ? … ?
k+1

size

Array indexes New item

ADT list positions

items

Figure 1: Shifting items for insertion at position 3

2.2.3 Insertion Algorithm(while loop)
▪ Insertion is to insert some element in the array at user defined location

12

INSERT(LA, N, K, ITEM):LA is a linear array with N element, K
is integer positive where K < N and LB = 0,Insert an element,
ITEM in index K.
1. [Assign counter], Set J := N-1 ; [LB = 0]
2. Repeat step 2.1 and 2.2 while J >= K
 2.1 [shift to the right all elements from J]
 Set LA[J+1] := LA[J]
 2.2 [decrement counter] Set J := J – 1
 [End of while loop]
4. [Insert element] Set LA[K] := ITEM
5. [Reset N] Set N := N + 1
6. Exit

2.2.3 Insertion Algorithm(for loop)
⚫ INSERT(LA, N, K, ITEM):LA is a linear array with N element, K is

integer positive where K < N and LB = 0,Insert an element, ITEM in index
K.

⚫ 1. Read: K and ITEM [index to perform insertion and value to be
inserted] (optional step as mentioned in the declaration)

⚫ 2. Repeat step for j=N-1 to K
⚫ 3. [shift to the right all elements from J]
⚫ Set LA[J+1] := LA[J]

[end of for loop]

⚫ 4. [Insert element] Set LA[K] := ITEM
⚫ 5. [Reset N] Set N := N + 1
⚫ 6. Exit

13

2.2.4 Deletion Algorithm

▪ Delete item.
(a)

 0 1 2 3 4 k-1 k MAX_LIST-1

 1 2 3 4 5 k k+1 MAX_LIST

14

12 3 44 100 … 5 10 18 ? … ?

k

size

Array indexes
Delete 19

ADT list positions

items

Figure 2: Deletion causes a gap

2.2.4 Deletion Algorithm

(b)

 0 1 2 3 k-1 MAX_LIST-1

 1 2 3 4 k MAX_LIST

15

12 3 44 100 … 5 10 18 ? … ?

k

size

Array indexes

ADT list positions

items

Figure 3: Fill gap by shifting

2.2.4 Deletion Algorithm(for loop)
⚫ DELETE(LA, N, K, ITEM):In an array LA this
⚫ Algo will delete the element ITEM at location
⚫ K.Where LA has N elements.
⚫ 1. Read :K. [index element you want to delete]
⚫ 2. Set ITEM:=LA[K]. [storing value before deleting]
⚫ 3. Repeat step 3.1 for I = K to N-2 [If LB = 0]
⚫ 3.1 [Shift element, forward]
⚫ Set LA[I] := LA[I+1]
⚫ [end of for loop]
⚫ 4. [Reset N in LA]
⚫ Set N := N – 1
⚫ 5. Exit

16

2.2.4 Deletion Algorithm(while loop)
⚫ DELETE(LA, N, K, ITEM):In an array LA this Algorithm will delete the

element ITEM at location K. Where LA has N elements.
⚫ 1. Read :K. [index element you want to delete]
⚫ 2. Set ITEM:=LA[K] and Set I:=K. [storing value before deleting]
⚫ 3. Repeat step 3.1 while I< N-1 [If LB = 0]
⚫ 3.1 [Shift element, forward]
⚫ Set LA[I] := LA[I+1]

 Set I:=I+1
⚫ [end of while loop]
⚫ 4. [Reset N in LA]
⚫ Set N := N – 1
⚫ 5. Exit

17

2.2.5 Sequential Search(while
loop)

Compare successive elements of a given list with a search ITEM until
1. either a match is encountered
2. or the list is exhausted without a match.
 0 1 N-1

SequentialSearch(LA, N, ITEM, LOC): Algorithm to search element
ITEM in an array LA having N elements and storing its location in LOC

 1. Set I := 0
 2. Repeat step 2.1 while i<N && LA[I] != ITEM
 2.1 Set I:=I+1

 3. If LA[I]=ITEM, then:
 write: found at LOC=I
 else:
 write: not found.
 4. Exit

18

Other algorithm to do linear
search/sequential search (for
loop)

SequentialSearch(LA, N, ITEM, LOC,TEMP): Algorithm to search element
ITEM in an array LA having N elements and storing its location in LOC. Where
TEMP ia a flag variable.

 1. Set TEMP :=0
 2. Repeat step 2.1 for I=0 to N-1
 2.1 if LB[I]=ITEM,then:
 set TEMP:=1 and LOC:=I
 and EXIT for loop
3. If Temp=1,then:
 write:found at LOC
 else:
 write:not found.
 4. Exit

19

2.2.5 Binary Search Algorithm
⚫ Binary search algorithm is efficient if the array is sorted.
⚫ A binary search is used whenever the list starts to become large.
⚫ Consider to use binary searches whenever the list contains more

than 16 elements.
⚫ The binary search starts by testing the data in the element at the

middle of the array to determine if the target is in the first or
second half of the list.

⚫ If it is in the first half, we do not need to check the second half. If
it is in the second half, we do not need to test the first half. In other
words we eliminate half the list from further consideration. We
repeat this process until we find the target or determine that it is
not in the list.

20

2.2.5 Binary Search Algorithm
⚫ To find the middle of the list, we need three variables, one to

identify the beginning of the list, one to identify the middle
of the list, and one to identify the end of the list.

⚫ We analyze two cases here: the target is in the list (target
found) and the target is not in the list (target not found).

21

2.2.5 Binary Search Algorithm
⚫ Target found case: Assume we want to find 22 in a sorted

list as follows:

⚫ The three indexes are first, mid and last. Given first as 0 and

last as 11, mid is calculated as follows:
mid = (first + last) / 2
mid = (0 + 11) / 2 = 11 / 2 = 5

22

4 7 8 10 14 21 22 36 62 77 81 91

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

2.2.5 Binary Search Algorithm
⚫ At index location 5, the target is greater than the list value (22 > 21).

Therefore, eliminate the array locations 0 through 5 (mid is automatically
eliminated). To narrow our search, we assign mid + 1 to first and repeat
the search.

23

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

0 5 11

first mid last
Target: 22

22 >
21

2.2.5 Binary Search Algorithm
⚫ The next loop calculates mid with the new value for first and

determines that the midpoint is now 8 as follows:
mid = (6 + 11) / 2 = 17 / 2 = 8

24

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

6 8 11

first mid last

Target: 22

22 <
62

2.2.5 Binary Search Algorithm
⚫ When we test the target to the value at mid a second time, we discover that the

target is less than the list value (22 < 62). This time we adjust the end of the list
by setting last to mid – 1 and recalculate mid. This step effectively eliminates
elements 8 through 11 from consideration. We have now arrived at index location
6, whose value matches our target. This stops the search.

25

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

6 6 7

first mid last Target: 22

22
equals

22
8 6 7

function terminates

first mid last

2.2.5 Binary Search Algorithm
⚫ Target not found case: This is done by testing for first and last crossing:

that is, we are done when first becomes greater than last. Two conditions
terminate the binary search algorithm when (a) the target is found or (b)
first becomes larger than last. Assume we want to find 11 in our binary
search array.

26

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

0 5 11

first mid last Target: 11

11 <
21

2.2.5 Binary Search Algorithm
⚫ The loop continues to narrow the range as we saw in the

successful search until we are examining the data at index
locations 3 and 4.

27

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

0 2 4

first mid last
Target: 11

11 > 8

2.2.5 Binary Search Algorithm
⚫ These settings of first and last set the mid index to 3 as follows:

mid = (3 + 4) / 2 = 7 / 2 = 3

28

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

3 3 4

first mid last Target: 11

11 >
10

2.2.5 Binary Search Algorithm
⚫ The test at index 3indicates that the target is greater than the list value, so we set first to mid

+ 1, or 4. We now test the data at location 4 and discover that 11 < 14. The mid is as
calculated as follows:

⚫ At this point, we have discovered that the target should be between two adjacent values; in
other words, it is not in the list. We see this algorithmically because last is set to mid – 1,
which makes first greater than last, the signal that the value we are looking for is not in the
list.

29

4 7 8 10 14 21 22 36 62 77 81 91
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

4 4 4

first mid last

Target: 11

11 <
14

4 4 3

first mid last

Function terminates

2.2.5 Binary Search Algorithm
⚫ Example algorithm:

DATA – sorted array
ITEM – Info
LB – lower bound
UB – upper bound
BEG– start Location
MID – middle Location
END – last Location

30

2.2.5 Binary Search Algorithm

31

BINARY SEARCH(DATA,END,ITEM,MID,BEG,N,LOC):binary search
is applied on array DATA having N elements.Where BEG represents
lower bound LB ,END represents upper bound UB and MID represents
middle index of the array.

1. [Define variables]
 Set BEG := LB, END:= UB
 Set MID: = (BEG+END)/2

2. Repeat steps 3 and 4 While BEG <= END && DATA[MID] != ITEM
3. If ITEM < DATA[MID], then:

 END = MID-1
 else:

 BEG:= MID+1
4. Set MID := (BEG+ END)/2
 [end of while loop]

5. If DATA[MID] = ITEM, then:
Set LOC:=MID.
 write :element found at MID

 else:
write:not found.

6. Exit

Another way to do binary
search algorithm
⚫ BINARYSEARCH(DATA,END,ITEM,MID,BEG,N,

LOC):binary search is applied on array DATA having
N elements.Where BEG represents lower bound LB
,End represents upper bound UB and MID represents
middle index of the array.

⚫ 1. [Define variables]
⚫ Set BEG := LB, LAST:= UB
⚫ Set MID: = (BEG+END)/2
⚫ 2. Repeat steps 3 and 4 While BEG <= END

32

⚫ 3. If ITEM < DATA[MID], then:
⚫ END = MID-1
⚫ else if ITEM=DATA[MID],then:
⚫ write :Element found at MID and EXIT from while loop
⚫ else:
⚫ BEG:=MID+1.
⚫ 4. Set MID := (BEG+ END)/2
⚫ [end of while loop]
⚫ 5. Exit

33

2.2.6 Merging Algorithm
⚫ Suppose A is a sorted list with r elements and B is a

sorted list with s elements. The operation that
combines the element of A and B into a single sorted
list C with n=r + s elements is called merging.

34

2.2.6 Merging Algorithm
⚫ Algorithm: Merging (A, R,B,S,C,N)
 Here A and B be sorted arrays with R and S elements
 respectively. This algorithm merges A and B into an array
 C with N=R+ S elements
⚫ Step 1: Set NA:=0, NB:=0 and NC:=0
⚫ Step 2: Repeat while NA < R and NB < S:
 if A[NA] ≤ B[NB], then:
 Set C[NC] := A[NA]
 Set NA: = NA +1
 else

 Set C[NC] := B[NB]
 Set NB: = NB +1
 [End of if-else structure]
 Set NC:= NC +1
 [End of while Loop]

35

2.2.6 Merging Algorithm
⚫ Step 3: If NA >R, then:
 Repeat while NB < S:
 Set C[NC]: = B[NB]
 Set NB := NB+1
 Set NC: = NC +1
 [End ofwhile Loop]
 else
 Repeat while NA < R:
 Set C[NC] := A[NA]
 Set NC := NC + 1
 Set NA: = NA +1
 [End of while loop]
 [End of if-else structure]
⚫ Step 4: Exit

36

2.2.6 Merging Algorithm
⚫ Complexity of merging: The input consists of the total

number n=r+s elements in A and B. Each comparison
assigns an element to the array C, which eventually has
n elements. Accordingly, the number f(n) of
comparisons cannot exceed n:

 f(n) ≤ n = O(n)

37

Exercises
⚫ Find where the indicated elements of an array a

are stored, if the base address of a is 200* and
LB = 0

a) double a[10]; a[3]?
b) int a[26]; a[2]?

*(assume that int(s) are stored in 4 bytes and
double(s) in 8 bytes).

38

2.3 MULTIDIMENSIONAL ARRAY
⚫ Two or more subscripts.

39

2-D ARRAY
⚫ A 2-D array, A with m X n elements.
⚫ In math application it is called matrix.
⚫ In business application – table.
⚫ Example:

Assume 25 students had taken 4 tests.
The marks are stored in 25 X 4 array locations:

40

U0 U1 U2 U3

Stud 0 88 78 66 89

Stud 1 60 70 88 90

Stud 2 62 45 78 88

..

..

Stud 24 78 88 98 67

n

m

2-D ARRAY
⚫ Multidimensional array declaration in C++:-

int StudentMarks [25][4];
StudentMarks[0][0] = 88;
StudentMarks[0][1] = 78;…..
OR
int StudentMarks [25][4] = {{88, 78, 66, 89},

 {60, 70, 88, 90},…}

41

2.3.1 2-D ARRAY
⚫ In C++ the 2-D array is visualized as follows:

42

…

[0]

[1]

[2]

[3]

[4]

[5]
[6]

[24]

StudentMarks
88 78 66 89

60 70 88 90

62 45 78 88

[0] [1] [2] [3]

2.3.2 Representation of
2D arrays in Memory

Column Major Order:
 LOC(A[j, k])=Base(A)+w[m*k + j]

Row Major order:
 LOC(A[j, k])=Base(A)+w[n*j + k]

Given: A 2-D array, A with m X n elements.

Thank You

44

