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Basic Concepts and Notations

⚫ Algorithm: Outline, the essence of a computational 
procedure, step-by-step instructions

⚫ Program: an implementation of an algorithm in some 
programming language

⚫ Data Structure: Organization of data needed to solve 
the problem



Algorithmic Problem

⚫ Infinite number of input instances satisfying the 
specification. For example: A sorted, non-decreasing 
sequence of natural numbers of non-zero, finite 
length:
⚫ 1, 20, 908, 909, 100000, 1000000000.
⚫ 3.

Specification 
of input ?

Specification 
of output as a 

function of 
input



Algorithmic Solution

⚫ Algorithm describes actions on the input instance
⚫ Infinitely many correct algorithms for the same 

algorithmic problem

Specification 
of input Algorithm

Specification 
of output as a 

function of 
input



What is a Good Algorithm?

⚫ Efficient:
⚫ Running time
⚫ Space used

⚫ Efficiency as a function of input size:
⚫ The number of bits in an input number
⚫ Number of data elements(numbers, points)



Complexity Analysis
and 

Time Space Trade-off



Complexity
⚫ A measure of the performance of an algorithm

⚫ An algorithm’s performance depends on

⚫ internal factors

⚫ external factors



 External Factors
⚫ Speed of the computer  on which it is run

⚫ Quality of the compiler

⚫ Size of the input to the  algorithm



Internal Factor

●9

●The algorithm’s efficiency, in terms of:

●  Time required to run

●  Space (memory storage)required to run

●Note:
●Complexity measures the internal factors (usually more interested 
in time than space)



Two ways of finding complexity

⚫Experimental study
⚫Theoretical Analysis 



Experimental study

⚫ Write a program implementing the algorithm
⚫ Run the program with inputs of varying size and 

composition
⚫ Get an accurate measure of the actual running time
   Use a method like System.currentTimeMillis()
⚫ Plot the results



Example

⚫ a.     Sum=0;
          for(i=0;i<N;i++)
             for(j=0;j<i;j++)
                  Sum++;



Example graph

●Time in millisec

●Size of n



Limitations of Experiments

⚫ It is necessary to implement the algorithm, which may be 

difficult 

⚫ Results may not be indicative of the running time on other 

inputs not included in the experiment.

⚫ In order to compare two algorithms, the same hardware and 

software environments must be used

⚫ Experimental data though important is not sufficient



Theoretical Analysis

⚫ Uses a high-level description of the algorithm instead of an 

implementation

⚫ Characterizes running time as a function of the input size, n.

⚫ Takes into account all possible inputs 

⚫ Allows us to evaluate the speed of an algorithm independent of 

the hardware/software environment



Complexity analysis
⚫ Why we should analyze algorithms?
⚫ Predict the resources that the algorithm requires
⚫ Computational time (CPU consumption)
⚫ Memory space (RAM consumption)
⚫ Communication bandwidth consumption

⚫ The running time of an algorithm is:
⚫ The total number of primitive operations executed (machine 

independent steps)
⚫ Also known as algorithm complexity



Need for analysis : Internal 
Factors
⚫ To determine resource consumption

⚫ CPU time

⚫ Memory space

⚫ Compare different methods for solving the same 

problem before actually implementing them and 

running the programs. 

⚫ To find an efficient algorithm



Space Complexity
⚫ The space needed by an algorithm is the sum of a fixed part 

and a variable part

⚫ The fixed part includes space for

⚫ Instructions

⚫ Simple variables

⚫ Fixed size component variables

⚫ Space for constants

⚫ Etc..



Cont…
⚫ The variable part includes space for

⚫ Component variables whose size is dependant on the 

particular problem instance being solved

⚫ Recursion stack space

⚫ Etc..



Time Complexity
⚫ The time complexity of a problem is 

⚫ the number of steps that it takes to solve an instance of the problem as a 

function of the size of the input (usually measured in bits), using the 

most efficient algorithm. 

⚫ The exact number of steps will depend on exactly what machine or language 

is being used. 

⚫ To avoid that problem, the Asymptotic notation is generally used.



Time Complexity
⚫ Worst-case
⚫ An upper bound on the running time for any input of 

given size
⚫ Average-case
⚫ Assume all inputs of a given size are equally likely

⚫ Best-case
⚫ The lower bound on the running time



Time Complexity – Example
⚫ Sequential search in a list of size n
⚫ Worst-case:
⚫ n comparisons

⚫ Best-case:
⚫ 1 comparison

⚫ Average-case:
⚫ n/2 comparisons



Asymptotic notations
⚫ Algorithm complexity is rough estimation of 

the number of steps performed by given 
computation depending on the size of the 
input data
⚫ Measured through asymptotic notation
⚫ O(g) where g is a function of the input data size

⚫ Examples:
⚫ Linear complexity O(n) – all elements are processed once (or 

constant number of times)
⚫ Quadratic complexity O(n2) – each of the elements is 

processed n times



O-notation
Asymptotic upper bound



Example
⚫ The running time is O(n2) means there is a function 

f(n) that is   O(n2)  such that for any value of n, no 
matter what particular input of size n is chosen, the 
running time of that input is bounded from  above by 
the value f(n).
⚫ 3 * n2 + n/2 + 12 ∈ O(n2)

⚫ 4*n*log
2
(3*n+1) + 2*n-1 ∈ O(n * log n)



 Ω notation
Asymptotic lower bound



Example
⚫ When we say that the running time (no modifier) of an 

algorithm is  Ω (g(n)).
⚫ we mean that no matter what particular input  of size 

n is chosen for each value of n, the running time on 
that input is at least a constant times g(n), for 
sufficiently large n.

⚫ n3 + 20n ∈ Ω(n2)



Θ notation
g(n) is an asymptotically  tight bound of f(n) 



Example



Big O notation 
⚫ f(n)=O(g(n)) iff there exist a positive constant c and 

non-negative integer n0 such that
f(n) ≤ cg(n)  for all n≥n0.

⚫ g(n) is said to be an upper bound of f(n). 



Basic rules 
1. Nested loops are multiplied together.

2. Sequential loops are added.
3. Only the largest term is kept, all others are dropped.
4. Constants are dropped.
5. Conditional checks are constant (i.e. 1).



Example of 
complexity



Linear loop

1) 
for(int i = 0; i < 10; i++)

 {
cout << i << endl;               

}
//time taken = ?



2)
 for(int i = 0; i < n; i++)
 {

cout << i << endl;               
}

//time taken = ?



⚫ Ans: O(n)



Quadratic Loops

1) for(int i = 0; i < 100; i++) 
{

for(int j = 0; j < 100; j++)
    {

//do swap stuff, constant time
}

}       //Time Taken =?



2) for(int i = 0; i < n; i++) 
{

for(int j = 0; j < n; j++)
    {

//do swap stuff, constant time
}

}            //Time Taken =?



⚫ Ans O(n^2)



Complex condition

1) for(int i = 0; i < 2*100; i++)
 {
cout << i << endl;
}

//Time Taken =?



2) for(int i = 0; i < 2*n; i++)
 {
cout << i << endl;
}

//Time Taken =?



⚫ At first you might say that the upper bound is O(2n); 
however, we drop constants so it becomes O(n)



More loops in one program
1) for(int i = 0; i <10 ; i++)

 {
cout << i << endl;

     }

for(int i = 0; i < 100; i++) 
{
for(int j = 0; j < 100; j++)

{
//do constant time stuff
}

} //Time Taken =?



2) 

for(int i = 0; i < n; i++)
 {

cout << i << endl;
     }

for(int i = 0; i < n; i++) 
{
for(int j = 0; j < n; j++)

{
//do constant time stuff
}

} //Time Taken =?



⚫ Ans : In this case we add each loop's Big O, in this case 
n+n^2. O(n^2+n) is not an acceptable answer since we 
must drop the lowest term. The upper bound is 
O(n^2). Why? Because it has the largest growth rate



Quadratic loop

1) for(int i = 0; i < 100; i++) 
   {

for(int j = 0; j < 2; j++)
{
//do stuff
}

   } //Time Taken =?



2) for(int i = 0; i < n; i++) 
{

for(int j = 0; j < 2; j++)
{
//do stuff
}

}
 //Time Taken =?



⚫ Ans: Outer loop is 'n', inner loop is 2, this we have 2n, 
dropped constant gives up O(n)



Complex iteration

1) for(int i = 1; i < n; i =i* 2)
 {

cout << i << endl;
}

//Time Taken =?



2) for(int i = 1; i < 100; i =i* 2)
 {

cout << i << endl;
}

//Time Taken =?



⚫ There are n iterations, however, instead of simply 
incrementing, 'i' is increased by 2*itself each run. Thus 
the loop is log(n).



Quadratic loop

1)  for(int i = 0; i < n; i++) 
{ 

for(int j = 1; j < n; j *= 2)
{ 
//do constant time stuff
}

}
//Time Taken =?



⚫ Ans: n*log(n)



While (n>=1)
{ 

n=n/2;
}

2) While (n>=1)
{

n=n/2;
}



●Comp 122

Relations Between Θ, O, Ω



time space tradeoff
⚫ A time space tradeoff is a situation where the memory use 

can be reduced at the cost of slower program execution 
(and, conversely, the computation time can be reduced at 
the cost of increased memory use). 

⚫ As the relative costs of CPU cycles, RAM space, and hard 
drive space change—hard drive space has for some time 
been getting cheaper at a much faster rate than other 
components of computers[citation needed]—the 
appropriate choices for time space tradeoff have changed 
radically. 

⚫ Often, by exploiting a time space tradeoff, a program can be 
made to run much faster.



Time Space Trade-off
⚫ In computer science, a space-time or time-memory trade off is a situation 

where the memory use can be reduced at the cost of slower program 

execution (or, vice versa, the computation time can be reduced at the cost of 

increased memory use). As the relative costs of CPU cycles, RAM space, 

and hard drive space change — hard drive space has for some time been 

getting cheaper at a much faster rate than other components of 

computers-the appropriate choices for space-time tradeoffs have 

changed radically. Often, by exploiting a space-time tradeoff, a 

program can be made to run much faster.



Types of Time Space Trade-off
⚫ Lookup tables v. recalculation

        The most common situation is an algorithm involving a lookup table: an 

implementation can include the entire table, which reduces computing time, 

but increases the amount of memory needed, or it can compute table entries 

as needed, increasing computing time, but reducing memory requirements.

⚫ Compressed v. uncompressed data

     A space-time trade off can be applied to the problem of data storage. If data 

is stored uncompressed, it takes more space but less time than if the data 

were stored compressed (since compressing the data reduces the amount of 

space it takes, but it takes time to run the decompression algorithm). 

Depending on the particular instance of the problem, either way is practical. 



Thank You



ARRAYS
 Linear arrays: Memory representation
 Traversal
 Insertion
 Deletion
 Linear Search
 Binary Search
 Merging
 2D Array : Memory representation
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2.1 Introduction
⚫ Data Structure can be classified as:
✔ linear
✔ non-linear

⚫ Linear (elements arranged in sequential in memory 
location) i.e. array & linear link-list

⚫ Non-linear such as a tree and graph.
⚫ Operations:
✔ Traversing, Searching, Inserting, Deleting, Sorting, Merging

⚫ Array is used to store a fix size for data and a link-list 
the data can be varies in size.

3



2.1 Introduction
⚫Advantages of an Array:
⚫ Very simple
⚫Economy – if full use of memory
⚫Random accessed at the same time

⚫Disadvantage of an Array: 
⚫ wasting memory if not fully used
⚫ Stores same data types’ elements

4



2.2 Linear Array
⚫ Homogeneous data:

a) Elements are represented through indexes. 
b) Elements are saved in sequential in memory locations. 

⚫ Number of elements, N –> length or size of an array. 
If: 

UB : upper bound ( the largest index)
LB : lower bound (the smallest index)

Then: N = UB – LB + 1
          Length = N = UB when LB = 1 

5



2.2 Linear Array
⚫ All elements in A are written symbolically as, 1 .. n is the 

subscript.
A1, A2, A3, .... , An

⚫ In FORTRAN and BASIC 🡪 A(1), A(2), ..., A(N)
⚫ In Pascal, C/C++ and Java 🡪 A[0], A[1], ..., A[N-1]
⚫ subscript starts from 0

LB = 0, UB = N–1 

6



2.2.1 Representation of Array in a Memory

⚫ The process to determine the address in a memory:
a) First address – base address.
b) Relative address to base address through index function. 

Example: char X[100];
Let char uses 1 location storage.
If the base address is 1200 then the next element is in 1201.
Index Function is written as:
Loc (X[i]) = Loc(X[0]) + i , i is subscript and  LB = 0

             1200      1201     1202      1203

                            X[0]      X[1]      X[2]

7



2.2.1 Representation of Array in a Memory

▪ In general, index function:
Loc (X[i]) = Loc(X[LB]) + w*(i-LB); 

where w is length of memory location required.
For real number: 4 byte, integer: 2 byte and character: 1 byte.

▪ Example:
If LB = 5, Loc(X[LB]) = 1200, and w = 4, find Loc(X[8]) ? 
Loc(X[8])= Loc(X[5]) + 4*(8 – 5)

= 1212

8



2.2.2 Traversing Algorithm  (While loop)
▪ Traversing operation means visit every element once, 

whether processed or not. 
     Traversal(LA,N): This is an algorithm to traverse  N
         elements of an array LA ..

 

9

1. [Assign counter]Set K:=0.       
2. Repeat step 2.1 and 2.2 while K <= UB   
    2.1 [visit element]

do PROCESS on LA[K].
     2.2 [add counter]

Set K:=K+1
[end of while loop]
4. exit.



2.2.2 Traversing Algorithm  
(for loop)
Traversal(LA,N): This is an algorithm to traverse 
         N elements of an array LA .
1.Repeat step 2 for K =0 to N-1
2. [visit element]

do PROCESS on LA[K].
    [end of for loop]
3. exit.

10



2.2.3 Insertion Algorithm

▪ Insert item at the back is easy if there is a space. Insert 
item in the middle requires the movement of all elements 
to the right as in Figure 1.  

         0      1      2      3      4                                        k                              MAX_LIST-1

             

                      
          1      2      3      4      5                                       k+1                            MAX_LIST

             

                            11

12 3 44 19 100 … 5 10 18 ? … ?
k+1

size

Array indexes New item

ADT list positions

items

Figure 1: Shifting items for insertion at position 3



2.2.3 Insertion Algorithm(while loop)
▪ Insertion is to insert some element in the array at user defined location

12

INSERT(LA, N, K, ITEM):LA is a linear array with N element, K 
is integer positive where K < N and LB = 0,Insert an element, 
ITEM in index K.
1. [Assign counter],   Set J := N-1 ;    [LB = 0]
2. Repeat step 2.1 and 2.2 while J >= K 
   2.1 [shift to the right all elements from J]
   Set LA[J+1] := LA[J]
   2.2 [decrement counter]  Set J := J – 1
 [End of while loop]
4. [Insert element]   Set LA[K] := ITEM
5. [Reset N]   Set N := N + 1
6. Exit



2.2.3 Insertion Algorithm(for loop)
⚫ INSERT(LA, N, K, ITEM):LA is a linear array with N element, K is 

integer positive where K < N and LB = 0,Insert an element, ITEM in index 
K.

⚫ 1. Read: K and ITEM   [index to perform insertion and value to be   
inserted]   (optional step as mentioned in the declaration)

⚫ 2. Repeat step for j=N-1 to K
⚫  3. [shift to the right all elements from J]
⚫    Set LA[J+1] := LA[J]

[end of for loop]

⚫  4. [Insert element]   Set LA[K] := ITEM
⚫ 5. [Reset N]   Set N := N + 1
⚫ 6. Exit

13



2.2.4 Deletion Algorithm

▪ Delete item.  
(a)

          
               0      1      2      3      4                               k-1    k                              MAX_LIST-1

             

                         1      2      3      4      5                                 k    k+1                            MAX_LIST
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12 3 44 100 … 5 10 18 ? … ?

k

size

Array indexes
Delete 19

ADT list positions

items

Figure 2: Deletion causes a gap



2.2.4 Deletion Algorithm

(b)

          
               0      1      2      3                                              k-1                             MAX_LIST-1

             

                         1      2      3      4                                                 k                               MAX_LIST

             

                            

15

12 3 44 100 … 5 10 18 ? … ?

k

size

Array indexes

ADT list positions

items

Figure 3: Fill gap by shifting



2.2.4 Deletion Algorithm(for loop)
⚫ DELETE(LA, N, K, ITEM):In an array LA this
⚫ Algo will delete the element ITEM at location 
⚫ K.Where LA has N elements.
⚫    1.   Read :K.  [index element you want to delete]
⚫     2. Set ITEM:=LA[K].  [storing value before deleting]
⚫    3.   Repeat step 3.1 for I = K to N-2 [If LB = 0]
⚫          3.1 [Shift element, forward] 
⚫                 Set LA[I] := LA[I+1]
⚫          [end of for loop]
⚫    4.   [Reset N in LA] 
⚫          Set N := N – 1  
⚫    5.   Exit 

16



2.2.4 Deletion Algorithm(while loop)
⚫ DELETE(LA, N, K, ITEM):In an array LA this Algorithm will delete the 

element ITEM at location  K. Where LA has N elements.
⚫    1.   Read :K.  [index element you want to delete]
⚫     2. Set ITEM:=LA[K] and Set I:=K.  [storing value before deleting]
⚫    3.   Repeat step 3.1 while I< N-1 [If LB = 0]
⚫          3.1 [Shift element, forward] 
⚫                 Set LA[I] := LA[I+1]

       Set I:=I+1
⚫          [end of while loop]
⚫    4.   [Reset N in LA] 
⚫          Set N := N – 1  
⚫    5.   Exit 

17



2.2.5 Sequential Search(while 
loop)

Compare successive elements of a given list with a search ITEM until
1. either a match is encountered
2. or the list is exhausted without a match.
                               0       1                                          N-1                                                

SequentialSearch(LA, N, ITEM, LOC): Algorithm to search element 
ITEM in an array LA having N elements and storing its location in LOC

   1.   Set I := 0
   2.   Repeat step 2.1 while i<N && LA[I] != ITEM 
     2.1 Set  I:=I+1

   3.   If  LA[I]=ITEM, then:
         write: found at LOC=I
         else:
         write: not found.
   4.   Exit                                                                      

18



Other algorithm to do linear 
search/sequential search (for 
loop)

SequentialSearch(LA, N, ITEM, LOC,TEMP): Algorithm to search element 
ITEM in an array LA having N elements and storing its location in LOC. Where 
TEMP ia a flag variable.

   1.   Set TEMP :=0
   2.   Repeat step 2.1 for I=0 to N-1
            2.1 if LB[I]=ITEM,then:
                       set TEMP:=1 and LOC:=I
                   and EXIT for loop
3. If Temp=1,then:
         write:found at LOC
         else:
         write:not found.
   4.   Exit

19



2.2.5 Binary Search Algorithm
⚫ Binary search algorithm is efficient if the array is sorted.
⚫ A binary search is used whenever the list starts to become large.
⚫ Consider to use binary searches whenever the list contains more 

than 16 elements.
⚫ The binary search starts by testing the data in the element at the 

middle of the array to determine if the target is in the first or 
second half of the list. 

⚫ If it is in the first half, we do not need to check the second half. If 
it is in the second half, we do not need to test the first half. In other 
words we eliminate half the list from further consideration. We 
repeat this process until we find the target or determine that it is 
not in the list.  

20



2.2.5 Binary Search Algorithm
⚫ To find the middle of the list, we need three variables, one to 

identify the beginning of the list, one to identify the middle 
of the list, and one to identify the end of the list.

⚫ We analyze two cases here: the target is in the list (target 
found) and the target is not in the list (target not found).

21



2.2.5 Binary Search Algorithm
⚫ Target found case: Assume we want to find 22 in a sorted 

list as follows:

 
⚫ The three indexes are first, mid and last. Given first as 0 and 

last as 11, mid is calculated as follows:
mid = (first + last) / 2
mid = (0 + 11) / 2 = 11 / 2 = 5

22

4 7 8 10 14 21 22 36 62 77 81 91

a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]



2.2.5 Binary Search Algorithm
⚫ At index location 5, the target is greater than the list value (22 > 21). 

Therefore, eliminate the array locations 0 through 5 (mid is automatically 
eliminated). To narrow our search, we assign mid + 1 to first and repeat 
the search.
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

0 5 11

first mid last
Target: 22

22 > 
21



2.2.5 Binary Search Algorithm
⚫ The next loop calculates mid with the new value for first and 

determines that the midpoint is now 8 as follows:
mid = (6 + 11) / 2 = 17 / 2 = 8
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

6 8 11

first mid last

Target: 22

22 < 
62



2.2.5 Binary Search Algorithm
⚫ When we test the target to the value at mid a second time, we discover that the 

target is less than the list value (22 < 62). This time we adjust the end of the list 
by setting last to mid – 1 and recalculate mid. This step effectively eliminates 
elements 8 through 11 from consideration. We have now arrived at index location 
6, whose value matches our target. This stops the search.
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

6 6 7

first mid last Target: 22

22 
equals 

22
8 6 7

function terminates

first mid last



2.2.5 Binary Search Algorithm
⚫ Target not found case: This is done by testing for first and last crossing: 

that is, we are done when first becomes greater than last. Two conditions 
terminate the binary search algorithm when (a) the target is found or (b) 
first becomes larger than last. Assume we want to find 11 in our binary 
search array.
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

0 5 11

first mid last Target: 11

11 < 
21



2.2.5 Binary Search Algorithm
⚫ The loop continues to narrow the range as we saw in the 

successful search until we are examining the data at index 
locations 3 and 4. 
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

0 2 4

first mid last
Target: 11

11 > 8



2.2.5 Binary Search Algorithm
⚫ These settings of first and last set the mid index to 3 as follows:

mid = (3 + 4) / 2 = 7 / 2 = 3
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

3 3 4

first mid last Target: 11

11 > 
10



2.2.5 Binary Search Algorithm
⚫ The test at index 3indicates that the target is greater than the list value, so we set first to mid 

+ 1, or 4. We now test the data at location 4 and discover that 11 < 14. The mid is as 
calculated as follows:

⚫ At this point, we have discovered that the target should be between two adjacent values; in 
other words, it is not in the list. We see this algorithmically because last is set to mid – 1, 
which makes first greater than last, the signal that the value we are looking for is not in the 
list.  
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4 7 8 10 14 21 22 36 62 77 81 91
a[0]  a[1]  a[2]  a[3]  a[4]  a[5]  a[6]  a[7]  a[8]  a[9]  a[10]  a[11]

4 4 4

first mid last

Target: 11

11 < 
14

4 4 3

first mid last

Function terminates



2.2.5 Binary Search Algorithm
⚫ Example algorithm:

DATA – sorted array
ITEM – Info
LB – lower bound
UB – upper bound
BEG– start Location
MID – middle Location 
END – last Location

30



2.2.5 Binary Search Algorithm 

31

BINARY SEARCH(DATA,END,ITEM,MID,BEG,N,LOC):binary search 
is applied on array DATA having N elements.Where BEG represents 
lower bound LB ,END represents upper bound UB and MID represents 
middle index of the array.  

1. [Define variables]
     Set BEG := LB, END:= UB 
     Set MID: = (BEG+END)/2

2.   Repeat steps 3 and 4 While BEG <= END && DATA[MID] != ITEM
3.   If ITEM < DATA[MID], then:

     END = MID-1
      else:

     BEG:= MID+1
4.   Set MID := (BEG+ END)/2
      [end of while loop]

5. If DATA[MID] = ITEM, then:
Set LOC:=MID.
     write :element found at MID

      else:
write:not found.

6.   Exit



Another way to do binary 
search algorithm
⚫ BINARYSEARCH(DATA,END,ITEM,MID,BEG,N,

LOC):binary search is applied on array DATA having 
N elements.Where BEG represents lower bound LB 
,End represents upper bound UB and MID represents 
middle index of the array.  

⚫ 1. [Define variables]
⚫      Set BEG := LB, LAST:= UB 
⚫      Set MID: = (BEG+END)/2
⚫ 2.   Repeat steps 3 and 4 While BEG <= END
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⚫ 3.   If ITEM < DATA[MID], then:
⚫      END = MID-1
⚫       else if ITEM=DATA[MID],then:
⚫       write :Element found at MID and EXIT from while loop 
⚫       else:
⚫         BEG:=MID+1.
⚫ 4.   Set MID := (BEG+ END)/2
⚫       [end of while loop]
⚫ 5.   Exit
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2.2.6 Merging Algorithm
⚫ Suppose A is a sorted list with r elements and B is a 

sorted list with s elements. The operation that 
combines the element of A and B into a single sorted 
list C with n=r + s elements is called merging.
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2.2.6 Merging Algorithm
⚫ Algorithm: Merging (A, R,B,S,C,N)
                      Here A and B be sorted arrays with R and S elements
                      respectively. This algorithm merges A and B into an array
                      C with N=R+ S elements
⚫ Step 1:     Set NA:=0, NB:=0 and NC:=0
⚫ Step 2: Repeat while NA < R and NB < S:
                if A[NA] ≤ B[NB], then:
                Set C[NC] := A[NA]
                Set NA: = NA +1
                else

                   Set C[NC] := B[NB]
                       Set NB: = NB +1
                   [End of if-else structure]
                  Set NC:= NC +1
                  [End of while Loop]
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2.2.6 Merging Algorithm
⚫ Step 3: If NA >R, then:
                 Repeat while NB < S:
                 Set C[NC]: = B[NB]
                Set NB := NB+1
                Set NC: = NC +1
                [End ofwhile Loop]
                 else
                Repeat while NA  < R:
                Set C[NC] := A[NA]
                Set NC := NC + 1
                Set NA: = NA +1
                [End of while loop]
                 [End of if-else structure]   
⚫ Step 4: Exit
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2.2.6 Merging Algorithm
⚫ Complexity of merging: The input consists of the total 

number n=r+s elements in A and B. Each comparison 
assigns an element to the array C, which eventually has 
n elements. Accordingly, the number f(n) of 
comparisons cannot exceed n:

                                f(n) ≤ n = O(n)
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Exercises
⚫ Find where the indicated elements of an array a 

are stored, if the base address of a is 200* and 
LB = 0

a) double a[10]; a[3]?
b) int a[26]; a[2]?

*(assume that int(s) are stored in 4 bytes and 
double(s) in 8 bytes).
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2.3 MULTIDIMENSIONAL ARRAY
⚫ Two or more subscripts.
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2-D ARRAY
⚫ A 2-D array, A with m X n elements.
⚫ In math application it is called matrix.
⚫ In business application – table.
⚫ Example:

Assume 25 students had taken 4 tests.
The marks are stored in 25 X 4 array locations:
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U0 U1 U2 U3

Stud 0 88 78 66 89

Stud 1 60 70 88 90

Stud 2 62 45 78 88

.. .. .. .. ..

.. .. .. .. ..

Stud 24 78 88 98 67

n

m



2-D ARRAY
⚫ Multidimensional array declaration in C++:-

int StudentMarks [25][4];
StudentMarks[0][0] = 88;
StudentMarks[0][1] = 78;…..
OR
int StudentMarks [25][4] = {{88, 78, 66, 89},

  {60, 70, 88, 90},…}
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2.3.1 2-D ARRAY
⚫ In C++ the 2-D array is visualized as follows:
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…

[0]

[1]

[2]

[3]

[4]

[5]
[6]

[24]

StudentMarks
88 78 66 89

60 70 88 90

62 45 78 88

[0] [1] [2] [3]



2.3.2 Representation of 
2D arrays in Memory

Column Major Order:
    LOC(A[j, k])=Base(A)+w[m*k + j]

Row Major order:
    LOC(A[j, k])=Base(A)+w[n*j + k]

Given: A 2-D array, A with m X n elements.



Thank You
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