Asymptotic Notation
O big-on upper bound
$\Omega$ big-omega lower bound
gt is ur ed
$\qquad$

$\Rightarrow$ Big-on
The function $f(n)=O(g(n))$ iffy $\exists$ the Constant $C$ and $n_{0}$
ruck that $f(n) \leq c * g(n) \forall n \geqslant n_{0}$
This is
(1). $f(n)=2 n+3$
$\rightarrow$ It can be any no. but greater than $2 u+3$.
or

$$
\begin{gathered}
2 n+3 \approx ? \\
2 n+3 \leqslant 2 n+3 n \\
2 n+3 \leq 5 n, n \geqslant 1 \quad F(n)=0(n) \\
0 \gamma \\
\operatorname{cog}-F(n)=2 n+3 \\
2 n+3 \leqslant 2 n^{2}+3 n^{2} \\
F(n) \leftarrow 2 n \leqslant 5 n^{2} \quad n \geqslant 1 \quad C g(n)
\end{gathered} \quad F(n)=0\left(n^{c}\right)
$$

omega
The function $f(n)=\Omega(g(n))$ if $\exists$ tree Constant $C$ and $n_{0}$.
such that $f(n) \geqslant c * g(n) \forall n \geqslant n_{0}$.
cg.

- Nile: If we write other variable it may be tie but not uracil.

There Notation.
The function $f(n)=\theta(g(n))$ iffy $\lambda$ the constants $c_{1}, c_{2}$ and $n_{0}$.
rouen that $c_{1} * g(n) \leqslant f(n) \leqslant c_{2} * g(n)$
ag, $f(n)=2 u+3$

$$
\begin{aligned}
& 1 \times u \leqslant 2 n+3 \leqslant 5 \times u \\
& c_{1} g(n) \quad f(n) c_{2} g(n) .
\end{aligned} \quad \underbrace{F(n)=\theta(n)}_{\downarrow}
$$

Hove: It is mostly riceomend.
This only. thing tut is porille.

Quen. $1 f(n)=2 n^{2}+3 n+4$.
(1)

$$
\begin{aligned}
2 n^{2}+3 n+4 & \leqslant 2 n^{2}+3 n^{2}+4 n^{2} \\
2 n^{2}+3 n+4 \leqslant & 9 n^{2} \quad(n \geqslant 1 \\
& \uparrow \quad(n(n) \\
& \subset(n)=O\left(n^{2}\right)
\end{aligned}
$$

(11) $F(x) \quad 2 n^{2}+3 n+4 \geqslant 1 x u^{2}$.

$$
\Omega\left(n^{2}\right)
$$

(ii1) $1 \times n^{2} \leq 2 n^{2}+3 n+n \leq 9 n^{2} \quad \theta\left(n^{2}\right)$

Qucg. 2

$$
\begin{aligned}
& f(n)=n^{2} \log n+n \\
& 1+n^{2} \log n \leq n^{2} \log n+n \leq \operatorname{lon} n^{2} \log n \\
& \quad O\left(n^{2} \log n\right) \quad \Omega\left(n^{\log \log n) \quad \theta(n \log n)}\right.
\end{aligned}
$$

Quec. 3

$$
\begin{gathered}
f(n)=n!=n \times(n-1) \times(n-2) \cdots 3 \times 2 \times 1 \\
|\times 1 \times \times \cdots \times 1 \leqslant| \times 2 \times 3 \cdots \times n \leq n \times n \times n \ldots \times n \\
1
\end{gathered}
$$

$\Rightarrow$ Mene we can not find any $\rightarrow$ for fachorial we funcrion we go for lower bound and opprsbound.

## DATA STRUCTURES

$\square$ Introduction:
Basic Concepts and Notations
Complexity analysis: time space tradeoff
$\square$ Algorithmic notations, Big O notation
$\square$ Introduction to omega, theta and little o notation

## Basic Concepts and Notations

- Algorithm: Outline, the essence of a computational procedure, step-by-step instructions
- Program: an implementation of an algorithm in some programming language
- Data Structure: Organization of data needed to solve the problem


## Algorithmic Problem

| Specification |
| :---: |
| of input |



- Infinite number of input instances satisfying the specification. For example: A sorted, non-decreasing sequence of natural numbers of non-zero, finite length:
- 1, 20, 908, 909, 100000, 1000000000.
- 3. 


## Algorithmic Solution

Specification
of input


Specification of output as a function of input

- Algorithm describes actions on the input instance
- Infinitely many correct algorithms for the same algorithmic problem


## What is a Good Algorithm?

- Efficient:
- Running time
- Space used
- Efficiency as a function of input size:
- The number of bits in an input number
- Number of data elements(numbers, points)


## Complexity Analysis

and

## Time Space Trade-off

## Complexity

- A measure of the performance of an algorithm
- An algorithm's performance depends on
- internal factors
- external factors


## External Factors

- Speed of the computer on which it is run
- Quality of the compiler
- Size of the input to the algorithm


## Internal Factor

-The algorithm's efficiency, in terms of:

- Time required to run
- Space (memory storage)required to run

Note:
Complexity measures the internal factors (usually more interested in time than space)

Two ways of finding complexity

Experimental study
Theoretical Analysis

## Experimental study

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Get an accurate measure of the actual running time Use a method like System.currentTimeMillis()
- Plot the results


## Example

a. $\quad$ Sum=o;
for ( $\mathrm{i}=\mathrm{o} ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$ ) for $(j=0 ; j<i ; j++)$

Sum++;

## Example graph


-Time in millisec

## Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Experimental data though important is not sufficient


## Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, $n$.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment


## Complexity analysis

- Why we should analyze algorithms?
- Predict the resources that the algorithm requires
- Computational time (CPU consumption)
- Memory space (RAM consumption)
- Communication bandwidth consumption
- The running time of an algorithm is:
- The total number of primitive operations executed (machine independent steps)
- Also known as algorithm complexity
- To determine resource consumption
- CPU time
- Memory space
- Compare different methods for solving the same problem before actually implementing them and running the programs.
- To find an efficient algorithm


## Space Complexity

- The space needed by an algorithm is the sum of a fixed part and a variable part

The fixed part includes space for

- Instructions
- Simple variables
- Fixed size component variables
- Space for constants
- Etc..
- The variable part includes space for
- Component variables whose size is dependant on the particular problem instance being solved
- Recursion stack space
- Etc..


## Time Complexity

- The time complexity of a problem is
- the number of steps that it takes to solve an instance of the problem as a function of the size of the input (usually measured in bits), using the most efficient algorithm.
- The exact number of steps will depend on exactly what machine or language is being used.

To avoid that problem, the Asymptotic notation is generally used.

## Time Complexity

- Worst-case
- An upper bound on the running time for any input of given size
- Average-case
- Assume all inputs of a given size are equally likely
- Best-case
- The lower bound on the running time


## Time Complexity - Example

- Sequential search in a list of size $n$
- Worst-case:
- n comparisons
- Best-case:
- 1 comparison
- Average-case:
- n/2 comparisons


## Asymptotic notations

- Algorithm complexity is rough estimation of the number of steps performed by given computation depending on the size of the input data
- Measured through asymptotic notation
- $O(\mathrm{~g})$ where g is a function of the input data size
- Examples:
- Linear complexity $0(n)$ - all elements are processed once (or constant number of times)
- Quadratic complexity $O\left(n^{2}\right)$ - each of the elements is processed $n$ times


## O-notation

Asymptotic upper bound

$O(g(n))=\left\{f(n):\right.$ there exist positive constants $c$ and $n_{0}$ such that

$$
\left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
$$

## Example

- The running time is $O\left(n^{2}\right)$ means there is a function $f(n)$ that is $O\left(n^{2}\right)$ such that for any value of $n$, no matter what particular input of size $n$ is chosen, the running time of that input is bounded from above by the value $\mathrm{f}(\mathrm{n})$.
- $3 * n^{2}+n / 2+12 \in O\left(n^{2}\right)$
- $4 * n * \log _{2}(3 * n+1)+2 * n-1 \in O(n * \log n)$


## $\Omega$ notation

Asymptotic lower bound

$\Omega(g(n))=\left\{f(n):\right.$ there exist positive constants $c$ and $n_{0}$ such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.

## Example

- When we say that the running time (no modifier) of an algorithm is $\Omega(\mathrm{g}(\mathrm{n}))$.
- we mean that no matter what particular input of size n is chosen for each value of n , the running time on that input is at least a constant times $g(n)$, for sufficiently large $n$.
- $\mathrm{n}^{3}+20 \mathrm{n} \in \Omega\left(\mathrm{n}^{2}\right)$


## $\Theta$ notation

$g(n)$ is an asymptotically tight bound of $f(n)$

$\Theta(g(n))=\left\{f(n)\right.$ : there exist positive constants $c_{1}, c_{2}$, and $n_{0}$ such that

$$
\left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\right\}
$$

## Example

$$
\begin{aligned}
& \frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right) \\
& c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}
\end{aligned}
$$

for all $n \geq n_{0}$. Dividing by $n^{2}$ yields
$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$.

$$
\begin{aligned}
& \mathrm{n}>=1, \mathrm{c} 2>=1 / 2 \\
& \mathrm{n}>=7, \mathrm{c} 1<=1 / 14
\end{aligned}
$$

choose $\mathrm{c} 1=1 / 14, \mathrm{c} 2=1 / 2, \mathrm{n} 0=7$.

## Big O notation

- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ iff there exist a positive constant c and non-negative integer $n_{0}$ such that

$$
f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n o .
$$

- $g(n)$ is said to be an upper bound of $f(n)$.


## Basic rules

1. Nested loops are multiplied together.
2. Sequential loops are added.
3. Only the largest term is kept, all others are dropped.
4. Constants are dropped.
5. Conditional checks are constant (i.e. 1).

# Example of complexity 

1) 

for(int $\mathrm{i}=\mathrm{o} ; \mathrm{i}<10 ; \mathrm{i}++$ ) \{ cout << i << endl; ) //time taken = ?
2)
for $(\mathrm{int} \mathrm{i}=\mathrm{o} ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$ )
\{
cout << i << endl;
\}
//time taken = ?

- Ans: $\mathrm{O}(\mathrm{n})$


## Quadratic Loops

1) for(int $\mathrm{i}=0 ; \mathrm{i}<100 ; \mathrm{i}++$ )
\{

> for $($ int $j=0 ; j<100 ; j++)$
> $\{$
//do swap stuff, constant time
\}
\} //Time Taken =?
2) for(int i=o; i $\quad$ n; i++) \{

$$
\text { for(int } \mathrm{j}=\mathrm{o} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++ \text { ) }
$$

\{
//do swap stuff, constant time \} \} $\quad / /$ Time Taken =?

- Ans O( $\mathrm{n}^{\wedge}$ )


## Complex condition

1) for (int $\mathrm{i}=0 ; \mathrm{i}<2^{*} 100 ; i++$ )
\{
cout << i << endl;
\}
//Time Taken =?
2) $\operatorname{for}\left(\mathrm{int} \mathrm{i}=0 ; \mathrm{i}<2^{*} \mathrm{n} ; \mathrm{i}++\right)$
\{
cout $\ll$ i $\ll$ endl;
\}
//Time Taken =?

- At first you might say that the upper bound is $\mathrm{O}(2 \mathrm{n})$; however, we drop constants so it becomes $\mathrm{O}(\mathrm{n})$


## More loops in one program

1) for $($ int $\mathrm{i}=\mathrm{o} ; \mathrm{i}<10 ; \mathrm{i}++)$
$\{$
cout $\ll$ i $\ll$ endl;
$\}$
for (int $\mathrm{i}=\mathrm{o} ; \mathrm{i}<100 ; \mathrm{i}++$ )
\{
for(int $\mathbf{j}=\mathbf{o} ; \mathbf{j}<100 ; j++$ )
\{
//do constant time stuff \}
\} //Time Taken =?
2) 

$$
\begin{aligned}
& \text { for(int } \mathrm{i}=\mathrm{o} ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++ \text { ) } \\
& \qquad \quad \text { cout } \ll \mathrm{i} \ll \text { endl; }
\end{aligned}
$$

$$
\}
$$

for $($ int $\mathrm{i}=\mathrm{o} ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$ )
\{
for (int $\mathrm{j}=\mathrm{o} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$ )
\{
//do constant time stuff
\}
\} //Time Taken =?

- Ans : In this case we add each loop's Big O, in this case $n+n^{\wedge} 2 . O\left(n^{\wedge} 2+n\right)$ is not an acceptable answer since we must drop the lowest term. The upper bound is $\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$. Why? Because it has the largest growth rate


## Quadratic loop

1) for(int i=o; i < 100; i++) \{
for(int $\mathrm{j}=\mathrm{o} ; \mathrm{j}<2 ; \mathrm{j}++$ )
\{
//do stuff
\}
\} //Time Taken =?
2) $\operatorname{for}(\mathrm{int} \mathrm{i}=\mathrm{o} ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)$ $\{$
for (int $\mathrm{j}=\mathrm{o} ; \mathrm{j}<2 ; \mathrm{j}++$ )
\{
//do stuff
\}
\}
//Time Taken =?

- Ans: Outer loop is ' n ', inner loop is 2 , this we have 2 n , dropped constant gives up $\mathrm{O}(\mathrm{n})$


## Complex iteration

1) for(int $\left.i=1 ; i<n ; i=i^{*} 2\right)$
$\{$

## cout << i << endl;

## \} <br> //Time Taken =?

2) for(int $\left.\mathrm{i}=1 ; \mathrm{i}<100 ; \mathrm{i}=\mathrm{i}^{*} 2\right)$ \{
cout $\ll$ i $\ll$ endl;
\}
//Time Taken =?

- There are n iterations, however, instead of simply incrementing, 'i' is increased by $2^{*}$ itself each run. Thus the loop is $\log (\mathrm{n})$.


## Quadratic loop

1) $\operatorname{for}(\mathrm{inti}=\mathrm{o} ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)$
$\{$

$$
\begin{aligned}
& \text { for(int } j=1 ; j<n ; j *=2) \\
& \quad\{
\end{aligned}
$$

//do constant time stuff \}
\}
//Time Taken =?

- Ans: $\mathrm{n}^{*} \log (\mathrm{n})$

While ( $\mathrm{n}>=1$ ) \{

$$
\mathrm{n}=\mathrm{n} / 2 ;
$$

$\}$
2) While (n>=1)
\{
$\mathrm{n}=\mathrm{n} / 2 ;$
\}

## Relations Between $\Theta, 0, \Omega$





## time space tradeoff

- A time space tradeoff is a situation where the memory use can be reduced at the cost of slower program execution (and, conversely, the computation time can be reduced at the cost of increased memory use).
- As the relative costs of CPU cycles, RAM space, and hard drive space change-hard drive space has for some time been getting cheaper at a much faster rate than other components of computers[citation needed]-the appropriate choices for time space tradeoff have changed radically.
- Often, by exploiting a time space tradeoff, a program can be made to run much faster.


## Tume Space Trade-off

- In computer science, a space-time or time-memory trade off is a situation where the memory use can be reduced at the cost of slower program execution (or, vice versa, the computation time can be reduced at the cost of increased memory use). As the relative costs of CPU cycles, RAM space, and hard drive space change - hard drive space has for some time been getting cheaper at a much faster rate than other components of computers-the appropriate choices for space-time tradeoffs have changed radically. Often, by exploiting a space-time tradeoff, a program can be made to run much faster.


## Types of Time Space Trade-off

## Lookup tables v. recalculation

The most common situation is an algorithm involving a lookup table: an implementation can include the entire table, which reduces computing time, but increases the amount of memory needed, or it can compute table entries as needed, increasing computing time, but reducing memory requirements.

- Compressed $v$. uncompressed data

A space-time trade off can be applied to the problem of data storage. If data is stored uncompressed, it takes more space but less time than if the data were stored compressed (since compressing the data reduces the amount of space it takes, but it takes time to run the decompression algorithm). Depending on the particular instance of the problem, either way is practical.

Thank You

## ARRAYS

$\square$ Linear arrays: Memory representation
$\square$ Traversal
$\square$ Insertion
$\square$ Deletion
$\square$ Linear Search
$\square$ Binary Search
$\square$ Merging
2D Array : Memory representation

## CONTENTS

2.1 Introductions
2.2 Linear Array
2.2.1 Linear Array Representations in Memory
2.2.2 Traversing Algorithm
2.2.3 Insert Algorithms
2.2.4 Delete Algorithms
2.2.5 Sequential and Binary Search Algorithm
2.2.6 Merging Algorithm
2.3 Multidimensional Array
2.3.1 2-D Array
2.3.2 Representations in Memory

### 2.1 Introduction

Data Structure can be classified as:
$\checkmark$ linear
$\checkmark$ non-linear

- Linear (elements arranged in sequential in memory location) i.e. array \& linear link-list
- Non-linear such as a tree and graph.
- Operations:
$\checkmark$ Traversing, Searching, Inserting, Deleting, Sorting, Merging
- Array is used to store a fix size for data and a link-list the data can be varies in size.


### 2.1 Introduction

- Advantages of an Array:
- Very simple
- Economy - if full use of memory
- Random accessed at the same time
- Disadvantage of an Array:
- wasting memory if not fully used
- Stores same data types' elements


### 2.2 Linear Array

- Homogeneous data:
a) Elements are represented through indexes.
b) Elements are saved in sequential in memory locations. Number of elements, $\mathrm{N} \rightarrow$ length or size of an array. If:

UB : upper bound ( the largest index)
LB : lower bound (the smallest index)
Then: $\mathrm{N}=\mathrm{UB}-\mathrm{LB}+1$
Length $=\mathrm{N}=\mathrm{UB}$ when $\mathrm{LB}=1$

### 2.2 Linear Array

All elements in A are written symbolically as, 1 .. n is the subscript.

$$
\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \ldots ., \mathrm{An}
$$

In FORTRAN and BASIC $\square \mathrm{A}(1), \mathrm{A}(2), \ldots, \mathrm{A}(\mathrm{N})$
In Pascal, $\mathrm{C} / \mathrm{C}++$ and Java $\square \mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[\mathrm{N}-1]$
subscript starts from 0

$$
\mathrm{LB}=0, \mathrm{UB}=\mathrm{N}-1
$$

### 2.2.1 Representation of Array in a Memory

The process to determine the address in a memory:
a) First address - base address.
b) Relative address to base address through index function.

Example: char X[100];
Let char uses 1 location storage.
If the base address is 1200 then the next element is in 1201. Index Function is written as:

$$
\operatorname{Loc}(\mathbf{X}[\mathbf{i}])=\mathbf{L o c}(\mathbf{X}[\mathbf{0}])+\mathbf{i} \quad, i \text { is subscript and } \mathrm{LB}=0
$$



### 2.2.1 Representation of Array in a Memory

- In general, index function:

$$
\operatorname{Loc}(\mathrm{X}[\mathrm{i}])=\operatorname{Loc}(\mathrm{X}[\mathrm{LB}])+\mathrm{w} *(\mathrm{i}-\mathrm{LB}) ;
$$

where $w$ is length of memory location required.
For real number: 4 byte, integer: 2 byte and character: 1 byte.

- Example:

If $\operatorname{LB}=5, \operatorname{Loc}(\mathrm{X}[\mathrm{LB}])=1200$, and $w=4$, find $\operatorname{Loc}(\mathrm{X}[8])$ ?
$\operatorname{Loc}(\mathrm{X}[8])=\operatorname{Loc}(\mathrm{X}[5])+4 *(8-5)$

$$
=1212
$$

### 2.2.2 Traversing Algorithm (While loop)

Traversing operation means visit every element once, whether processed or not.
Traversal(LA,N): This is an algorithm to traverse N elements of an array LA ..

1. [Assign counter]Set $\mathrm{K}:=0$.
2. Repeat step 2.1 and 2.2 while $\mathrm{K}<=\mathrm{UB}$
2.1 [visit element] do PROCESS on LA[K].
2.2 [add counter] Set K: $=\mathrm{K}+1$
[end of while loop]
3. exit.

### 2.2.2 Traversing Algorithm

## (for loop)

Traversal(LA,N): This is an algorithm to traverse N elements of an array LA.
1.Repeat step 2 for $\mathrm{K}=0$ to $\mathrm{N}-1$
2. [visit element] do PROCESS on LA[K].
[end of for loop]
3. exit.

### 2.2.3 Insertion Algorithm

Insert item at the back is easy if there is a space. Insert item in the middle requires the movement of all elements to the right as in Figure 1.


ADT list positions
Figure 1: Shifting items for insertion at position 3

### 2.2.3 Insertion Algorithm(while loop)

- Insertion is to insert some element in the array at user defined location

INSERT(LA, N, K, ITEM):LA is a linear array with N element, K is integer positive where $\mathrm{K}<\mathrm{N}$ and $\mathrm{LB}=0$, Insert an element, ITEM in index K .

1. [Assign counter], Set $\mathrm{J}:=\mathrm{N}-1$; [LB = 0]
2. Repeat step 2.1 and 2.2 while $\mathrm{J}>=\mathrm{K}$
2.1 [shift to the right all elements from J] Set LA[J+1] := LA[J]
2.2 [decrement counter] Set J := J - 1
[End of while loop]
3. [Insert element] Set LA[K] := ITEM
4. [Reset N$]$ Set $\mathrm{N}:=\mathrm{N}+1$
5. Exit

### 2.2.3 Insertion Algorithm(for loop)

- INSERT(LA, $\mathrm{N}, \mathrm{K}$, ITEM):LA is a linear array with N element, K is integer positive where $\mathrm{K}<\mathrm{N}$ and LB $=0$, Insert an element, ITEM in index K.

1. Read: K and ITEM [index to perform insertion and value to be inserted] (optional step as mentioned in the declaration)

- 2. Repeat step for $\mathrm{j}=\mathrm{N}-1$ to K

3. [shift to the right all elements from J] Set LA[J+1] := LA[J]
[end of for loop]
4. [Insert element] Set LA[K] := ITEM
5. [Reset N$] \operatorname{Set} \mathrm{N}:=\mathrm{N}+1$
6. Exit

### 2.2.4 Deletion Algorithm

## Delete item.

(a)


ADT list positions
Figure 2: Deletion causes a gap

### 2.2.4 Deletion Algorithm

(b)

Array indexes


ADT list positions
Figure 3: Fill gap by shifting

### 2.2.4 Deletion Algorithm(for loop)

- DELETE(LA, N, K, ITEM):In an array LA this
- Algo will delete the element ITEM at location
- K.Where LA has N elements.

1. Read :K. [index element you want to delete]
2. Set ITEM: $=\mathrm{LA}[\mathrm{K}]$. [storing value before deleting]
3. Repeat step 3.1 for $\mathrm{I}=\mathrm{K}$ to $\mathrm{N}-2$ [If $\mathrm{LB}=0$ ]
3.1 [Shift element, forward]

$$
\text { Set LA }[\mathrm{II}]:=\mathrm{LA}[\mathrm{I}+1]
$$

[end of for loop]
4. [Reset N in LA]

Set $\mathrm{N}:=\mathrm{N}-1$
5. Exit

### 2.2.4 Deletion Algorithm(while loop)

- DELETE(LA, N, K, ITEM):In an array LA this Algorithm will delete the element ITEM at location K. Where LA has N elements.

1. Read :K. [index element you want to delete]
2. Set ITEM:=LA[K] and Set $\mathrm{I}:=\mathrm{K}$. [storing value before deleting]
3. Repeat step 3.1 while $\mathrm{I}<\mathrm{N}-1 \quad$ [If $\mathrm{LB}=0$ ]
3.1 [Shift element, forward]

Set LA[I] := LA[I+1]
Set $\mathrm{I}:=\mathrm{I}+1$
[end of while loop]

- 4. [Reset N in LA]

Set $\mathrm{N}:=\mathrm{N}-1$
5. Exit

## loop)

Compare successive elements of a given list with a search ITEM until

1. either a match is encountered
2. or the list is exhausted without a match.


SequentialSearch(LA, N, ITEM, LOC): Algorithm to search element
ITEM in an array LA having N elements and storing its location in LOC

1. Set $\mathrm{I}:=0$
2. Repeat step 2.1 while $\mathrm{i}<\mathrm{N} \& \& \mathrm{LA}[\mathrm{I}]$ != ITEM
2.1 Set I: $=\mathrm{I}+1$
3. If $L A[I]=I T E M$, then:
write: found at $\mathrm{LOC}=\mathrm{I}$
else:
write: not found.
4. Exit

## search/sequential search (for

 loop)SequentialSearch(LA, N, ITEM, LOC,TEMP): Algorithm to search element
ITEM in an array LA having N elements and storing its location in LOC. Where TEMP ia a flag variable.

1. Set TEMP $:=0$
2. Repeat step 2.1 for $\mathrm{I}=\mathrm{o}$ to $\mathrm{N}-\mathbf{1}$
2.1 if $\mathrm{LB}[\mathrm{I}]=\mathrm{ITEM}$, then:
set TEMP:=1 and LOC:=I
and EXIT for loop
3. If Temp $=1$,then:
write:found at LOC
else:
write:not found.
4. Exit

### 2.2.5 Binary Search Algorithm

- Binary search algorithm is efficient if the array is sorted.

A binary search is used whenever the list starts to become large.
Consider to use binary searches whenever the list contains more than 16 elements.
The binary search starts by testing the data in the element at the middle of the array to determine if the target is in the first or second half of the list.

- If it is in the first half, we do not need to check the second half. If it is in the second half, we do not need to test the first half. In other words we eliminate half the list from further consideration. We repeat this process until we find the target or determine that it is not in the list.


### 2.2.5 Binary Search Algorithm

- To find the middle of the list, we need three variables, one to identify the beginning of the list, one to identify the middle of the list, and one to identify the end of the list.
- We analyze two cases here: the target is in the list (target found) and the target is not in the list (target not found).


### 2.2.5 Binary Search Algorithm

Target found case: Assume we want to find 22 in a sorted list as follows:

$$
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]
$$

| 4 | 7 | 8 | 10 | 14 | 21 | 22 | 36 | 62 | 77 | 81 | 91 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- The three indexes are first, mid and last. Given first as 0 and last as 11 , mid is calculated as follows:

$$
\begin{aligned}
& \operatorname{mid}=(\text { first }+ \text { last }) / 2 \\
& \operatorname{mid}=(0+11) / 2=11 / 2=5
\end{aligned}
$$

### 2.2.5 Binary Search Algorithm

At index location 5, the target is greater than the list value $(22>21)$. Therefore, eliminate the array locations 0 through 5 (mid is automatically eliminated). To narrow our search, we assign mid +1 to first and repeat the search.


### 2.2.5 Binary Search Algorithm

The next loop calculates mid with the new value for first and determines that the midpoint is now 8 as follows:

$$
\operatorname{mid}=(6+11) / 2=17 / 2=8
$$



### 2.2.5 Binary Search Algorithm

When we test the target to the value at mid a second time, we discover that the target is less than the list value $(22<62)$. This time we adjust the end of the list by setting last to mid -1 and recalculate mid. This step effectively eliminates elements 8 through 11 from consideration. We have now arrived at index location 6 , whose value matches our target. This stops the search.


Target: 22


### 2.2.5 Binary Search Algorithm

Target not found case: This is done by testing for first and last crossing: that is, we are done when first becomes greater than last. Two conditions terminate the binary search algorithm when (a) the target is found or (b) first becomes larger than last. Assume we want to find 11 in our binary search array.


### 2.2.5 Binary Search Algorithm

The loop continues to narrow the range as we saw in the successful search until we are examining the data at index locations 3 and 4.


### 2.2.5 Binary Search Algorithm

These settings of first and last set the mid index to 3 as follows:

$$
\operatorname{mid}=(3+4) / 2=7 / 2=3
$$



### 2.2.5 Binary Search Algorithm

The test at index 3indicates that the target is greater than the list value, so we set first to mid +1 , or 4 . We now test the data at location 4 and discover that $11<14$. The mid is as calculated as follows:
At this point, we have discovered that the target should be between two adjacent values; in other words, it is not in the list. We see this algorithmically because last is set to mid -1, which makes first greater than last, the signal that the value we are looking for is not in the list.


## Target: 11

| $a[0] \quad a[1]$ |
| :--- |
| 4 7 8 10 14 21 22 36 62 77 81 91 |

Function terminates

### 2.2.5 Binary Search Algorithm

Example algorithm:
DATA - sorted array
ITEM - Info
LB - lower bound
UB - upper bound
BEG- start Location
MID - middle Location
END - last Location

### 2.2.5 Binary Search Algerithm

BINARY SEARCH(DATA,END,ITEM,MID,BEG,N,LOC):binary search is applied on array DATA having N elements. Where BEG represents lower bound LB ,END represents upper bound UB and MID represents middle index of the array.

1. [Define variables]

Set BEG := LB, END:= UB
Set MID: $=($ BEG + END $) / 2$
2. Repeat steps 3 and 4 While $\mathrm{BEG}<=$ END \&\& DATA[MID] != ITEM
3. If ITEM $<$ DATA[MID], then:

END $=$ MID -1
else:
BEG:= MID+1
4. Set MID := (BEG+ END) $/ 2$ [end of while loop]
5. If DATA[MID] = ITEM, then:

Set LOC:=MID.
write :element found at MID
else:
write:not found.
6. Exit

# Another way to do binar 

search algorithm

- BINARYSEARCH(DATA,END,ITEM,MID,BEG,N, LOC):binary search is applied on array DATA having N elements. Where BEG represents lower bound LB ,End represents upper bound UB and MID represents middle index of the array.

1. [Define variables]

Set BEG := LB, LAST:= UB
Set MID: $=($ BEG + END $) / 2$

- 2. Repeat steps 3 and 4 While $\mathrm{BEG}<=\mathrm{END}$
- 3. If ITEM < DATA[MID], then: END $=$ MID-1 else if ITEM=DATA[MID],then: write :Element found at MID and EXIT from while loop else:
BEG:=MID+1.
- 4. Set MID :=(BEG+ END) $/ 2$
[end of while loop]
- 5. Exit


### 2.2.6 Merging Algorithm

- Suppose A is a sorted list with r elements and B is a sorted list with s elements. The operation that combines the element of $A$ and $B$ into a single sorted list $C$ with $n=r+s$ elements is called merging.


### 2.2.6 Merging Algorithm

- Algorithm: Merging (A, R,B,S,C,N)

Here $A$ and $B$ be sorted arrays with $R$ and $S$ elements respectively. This algorithm merges $A$ and $B$ into an array
C with $\mathrm{N}=\mathrm{R}+\mathrm{S}$ elements

- Step 1: Set NA:=o, NB:=o and NC:=o
- Step 2: Repeat while NA $<\mathrm{R}$ and NB $<\mathrm{S}$ :
if $\mathrm{A}[\mathrm{NA}] \leq \mathrm{B}[\mathrm{NB}]$, then:
Set C[NC]:=A[NA]
Set NA: = NA +1
else

$$
\begin{aligned}
& \text { Set } C[N C]:=B[N B] \\
& \text { Set NB: }=N B+1
\end{aligned}
$$

[End of if-else structure]
Set NC:= NC +1
[End of while Loop]

### 2.2.6 Merging Algorithm

- Step 3: If NA $>$ R, then:

Repeat while NB < S:
Set $C[N C]:=B[N B]$
Set NB: NB+1
Set NC: = NC +1
[End ofwhile Loop]
else
Repeat while NA < R:
Set C[NC]:=A[NA]
Set NC:= NC +1
Set NA: = NA +1
[End of while loop]
[End of if-else structure]

- Step 4: Exit


### 2.2.6 Merging Algorithm

- Complexity of merging: The input consists of the total number $\mathrm{n}=\mathrm{r}+\mathrm{s}$ elements in A and B. Each comparison assigns an element to the array C , which eventually has n elements. Accordingly, the number $\mathrm{f}(\mathrm{n})$ of comparisons cannot exceed n :

$$
\mathrm{f}(\mathrm{n}) \leq \mathrm{n}=\mathrm{O}(\mathrm{n})
$$

## Exercises

- Find where the indicated elements of an array a are stored, if the base address of a is $200^{*}$ and LB = 0
a) double $\mathrm{a}[10]$; $\mathrm{a}[3]$ ?
b) int a[26]; a[2]?
*(assume that int(s) are stored in 4 bytes and double(s) in 8 bytes).


### 2.3 MULTIDIMENSIONAL ARRAY

Two or more subscripts.

## 2-D ARRAY

A 2-D array, A with $m X n$ elements.In math application it is called matrix.
In business application - table.
Example:
Assume 25 students had taken 4 tests.
The marks are stored in 25 X 4 array locations:

|  | U0 | U1 | U2 | U3 |
| :---: | :---: | :---: | :---: | :---: |
| Stud 0 | 88 | 78 | 66 | 89 |
| Stud 1 | 60 | 70 | 88 | 90 |
| Stud 2 | 62 | 45 | 78 | 88 |
| .. | .. | .. | .. | .. |
| .. | .. | .. | .. | .. |
| Stud 24 | 78 | 88 | 98 | 67 |

## 2-D ARRAY

Multidimensional array declaration in C++:int StudentMarks [25][4];
StudentMarks[0][0] = 88;
StudentMarks[0][1] = 78; $\ldots$.
OR
int StudentMarks [25][4] = \{\{88, 78, 66, 89\},

$$
\{60,70,88,90\}, \ldots\}
$$

### 2.3.1 2-D ARRAY

- In C++ the 2-D array is visualized as follows:

StudentMarks


### 2.3.2 Representation of 2D arrays in Memory

Column Major Order:
$\operatorname{LOC}(\mathrm{A}[\mathrm{j}, \mathrm{k}])=\operatorname{Base}(\mathrm{A})+\mathrm{w}\left[\mathrm{m}^{*} \mathrm{k}+\mathrm{j}\right]$

Row Major order:
$\operatorname{LOC}(\mathrm{A}[\mathrm{j}, \mathrm{k}])=\operatorname{Base}(\mathrm{A})+\mathrm{w}[\mathrm{n} * \mathrm{j}+\mathrm{k}]$

Given: A 2-D array, A with $m X n$ elements.

# Thank You 

